Towards Exact Localization without Explicit Localization
with the Generalized Voronoi Graph

Keiji Nagatani

Howie Choset

Sebastian Thrun

Carnegie Mellon University

Abstract. Sensor based exploration is a task which
enables a robot to explore and map an unknown environ-
ment, using sensor information. The map used in this
paper is the generalized Voronoi graph (GVG). The robot
explores an unknown environment using an already de-
veloped incremental construction procedure to generate
the GV G using sensor information. This paper presents
some wnitial results which uses the GVG for robot lo-
calization, while mitigating the need to update encoder
values. Erperimental results verify the described work.

1 Introduction

Sensor based exploration enables a robot to explore
an unknown environment, and using its sensor infor-
mation, build a map of that environment. A critical
component to this task is the robot’s ability to ascer-
tain its location in the partially explored map or to de-
termine that it has entered new territory. Many con-
ventional methods attempt to make this determination
via a localization scheme which updates the (z,y) co-
ordinates of the robot. Most robots update their loca-
tion by integrating data from their wheel encoders which
count the number of wheel rotations (or fractional rota-
tions). If the robot slips, the wheels do not rotate and
thus this motion cannot be integrated by the robot’s en-
coder, thereby causing error. GPS systems may offer an
alternative, but commercially available systems do not
work inside buildings nor provide the necessary resolu-
tion. Finally, landmarks with known locations can be
deployed in the environment, but the task described in
this paper considers environments that are completely
unknown a priori.

In our approach, the robot exploits the geometries of
the map it is building where it can either (i) locate itself
on the partially explored map or (ii) conclude that it is
exploring a new area. In this paper, we never explicitly
update the (z,y) coordinates of the robot, but rather
we locate the robot in partially explored map, as the
map is being generated. The map used in this work is
the the generalized Voronoi graph (GVG), which is a
map embedded in robot’s free space that captures the
topologically salient features of the free space. With
the GVG the robot can plan a path between any two
points in the environment by first planning a path to the
GVG, then along the GVG, and finally from the GVG
to the goal. Thus, knowing the GVG is equivalent to

knowing the free space and constructing the map is a kin
to exploring the free space. A key feature of the GVG
is that it can be constructed using line of sight range
data. Therefore, the GVG is not only a representation
of free space but also supplies a procedure to explore it.

This paper presents some initial results on how the
robot can locate itself on a partially constructed GVG,
or conclude new edge fragments are being generated.
Although the robot locates itself on the GVG, it never
needs to determine its (z,y,0) coordinates (and hence
the title of this paper). The robot can propagate the
coordinates of each point on the GVG from the known
location of one point, such as the start point which can

be specified to be (0,0, 0).
2 Relation to Prior Work

This work draws from two areas: sensor based plan-
ning and localization. Although both of these fields are
vast, only included in this paper are the works which
have influenced the authors’ thinking.

2.1

Much of the previous work in sensor based planning

Sensor Based Planning and Roadmaps

is not complete and is limited to the plane. One class
of heuristic algorithms employs a behavioral based ap-
proach in which the robot is armed with a simple set of
behaviors (e.g., following a wall) [3]. Another heuristic
approach involves discretizing a planar world into pix-
els of some resolution. Typically, this approach handles
errors in sonar sensing readings quite well by assign-
ing each pixel a value indicating the likelihood that 1t
overlaps an obstacle [2]. Strong experimental results in-
dicate the utility of these approaches, and thus these al-
gorithms may provide a future basis for complete sensor
based planners. Unfortunately, these approaches neither
afford proofs of correctness that guarantee a path can
be found, nor offer well established thresholds for when
these heuristic algorithms fail. Finally, these approaches
do not typically generalize into higher dimensions.
There are many non-heuristic sensor based algo-
rithms for which provably correct solutions exist in the
plane (see [16] for an overview). Our approach is to
adapt the structure of a provably correct classical mo-
tion planning scheme to a sensor based implementation.
One such approach is based on a roadmap [4], a one-
dimensional subset of a robot’s free space which captures
all of its important topological properties. A roadmap

has the following properties: accessibility, connectivity,
and departability. These properties imply that the plan-
ner can construct a path between any two points in a
connected component of the robot’s free space by first
finding a path onto the roadmap (accessibility), travers-
ing the roadmap to the vicinity of the goal (connectiv-
ity), and then constructing a path from the roadmap to
the goal (departability).

The roadmap used in this work is the generalized
Voronoi graph (GVG), which is the set of points equidis-
tant to m obstacles in m dimensions. In the plane, the
GVG is simply the generalized Voronoi diagram [15], the
set of points equidistant to two obstacles. In 3, the
GVG 1is the one-dimensional set of points equidistant to
three obstacles. The GVG method is useful in higher
dimensions because the bulk of the motion planning is
done in a one-dimensional space.

The GVG’s incremental construction procedure [5]
gives the GVG its primary strength. This incremental
construction procedure only requires line of sight infor-
mation and this procedure places no restrictions on the
type of obstacles; obstacles need not be polygonal, poly-
hedral, nor convex, which are assumptions most motion
planners require.

For some environments, this algorithm has been suc-
cessfully implemented on a mobile robot with a ring of
sonar sensors [7]. Unfortunately, the incremental con-
struction procedure does not take into consideration er-
rors in encoder readings and thus the original procedure
is not suitable to deploy a robot into any environment
of a meaningful size, say 100 square meters or more.

2.2 Localization

Localization is a major area of mobile robotics which
has received increased attention over the past decade.
Again, the literature in this field is vast, so only work
which has influenced this paper’s results are mention.
See Borenstein et. al. [1] for a complete overview of
current localization techniques.

Lu, Shatkay and Kaelbling, and Thrun et. al. have
supplied some localization techniques which do not
make overly restrictive assumptions, such all walls are
orthogonal and there are no cycles in the environment.
Lu, Milios and Gutmann [13], [14], [10] use gradient as-
cent to update various location estimates forwards and
backwards in time. As a result, this approach has led
to significantly larger maps that are more accurate, but
1s still limited to situations with bounded odometric er-
ror. Shatkay and Kaelbling [17] proposed an approach
that uses probabilistic representations, along with the
well-known Baum-Welch algorithm for efficient estima-
tion. Their approach 1s similar in nature to the one
described by Thrun [18], in that they both employ prob-
abilistic representations and both use the Baum-Welch

algorithm. However, the method in [17] does not con-
sider orientation dead-reckoning error.

Thrun has recently completed a localization approach
that has been successfully verified in very large environ-
ments on a mobile robot where a map is known a priori
or the robot is driven (currently by an external agent) to
acquire environmental information [18]. This approach
poses a maximum likelihood estimation problem, where
both the location of landmarks and the robot’s position
have to be estimated. Likelihood is maximized under
probabilistic constraints that arise from the physics of
robot motion and perception. Just like in [18], they
use a Baum-Welch (or alpha-beta) algorithm. Unfor-
tunately, this approach requires a user to specify the
landmarks, as opposed to the robot self-selecting them.
Also, their approach, does not include an exploration
strategy. In other words, there is nothing in their ap-
proach that directs the robot to explore new areas, nor
guides the robot to specific locations to reduce dead-
reckoning error.

2.3 Localization with Topological Maps

There is one philosophical difference between the pre-
vious approaches and the one in this paper: previous
approaches are constantly trying to update the robot’s
(z,y) coordinates, relative to a global frame, whereas
the approach in this paper locates the robot on a map
and never updates the robot’s (#,y) location. Others
such as Dudek [9] and Kuipers et. al [12] have reported
localizations results with the same philosophy. In [9],
an agent locates itself on a graph by matching up nodes
and the adjacency relationship between them. This ap-
proach assumes the agent can label each node by de-
positing a marker at the nodes. The approach in this
paper and in [12] has the robot automatically identify
nodes in the topological graph from geometric environ-
mental information.

The basic thrust of the this paper’s work is quite
similar to Kuiper’s. In [12], the robot essentially traces
double equidistance until a sensor threshold is met, at
which point the robot follows the obstacle boundaries.
The nodes in this graph are termed distinct places which
are local maxima of the distance to nearby obstacles.
The robot can easily self-determine distinct places from
sensor data. Distinct places are a subset of the nodes of
the GVG, which are the set of points equidistant to three
obstacles (in other words, there exists examples of triple
equidistance that are not local maxima). Localization is
achieved again by matching distinct places of the graph.

3 Sensor Based Navigation and Map
Building

One of the key features of the GVG is that arobot can

incrementally construct it using only line of sight infor-

mation. Incremental construction of the GVG has four
key components: (1) explicitly “trace” the GVG edges;
(2) determine the location of the meet points (GVG ver-
tices); (3) explore the branches emanating from the meet
points; and (4) determine when to terminate the trac-
ing procedure. This section reviews the edge tracing
procedure for the GVG which has been reported in [5],
[6].

Unfortunately, robots have dead-reckoning error, and
the incremental construction procedure must accommo-
date this error, as well.

3.1 Edge Tracing

The GVG edges are traced in an incremental man-
ner using an adaptation of numerical continuation tech-
niques [11]. Practically speaking, these techniques trace
the roots of the expression

di —ds
di —ds

G(z) = . (x) = 0.
di —d,

where d; is distance to an object C;, and thus if (dy —
do)(®) = (dy — d3)(x) = -+ = (d1 — dm)(®) = 0, the
robot is equidistant to m obstacles. In the planar case
G(z) = (dp — d2)(x), which is zero when the robot is
equidistant to two obstacles.

Since (G is a function of distance, it can be computed
from sensors. At a point x in the neighborhood of the
interior of a GVG edge, the robot steps in the direction

&= aNull(VG(2)) + B(VG(2) G(z), (1)

where
¢ « and [are scalar gains,
o Null(VG(2)) is the null space of VG(z),
o (VG(2))! is the Penrose pseudo inverse of VG(x),

ie.,
(VG(2))! = (VG(2)) (VG(2)(VG(x)T) ™

Note that when z is on the GVG, G(z) = 0 and
thus & = a Null(VG(2)), which is simply the tangent
direction of the GVG. The stability of this control law
was derived [7].

Edge tracing has been implemented on a mobile robot
with a ring of sonar sensors radially pointing outward
from the center. A local minimum in the sensor ring
corresponds to the distance to the nearest obstacle. So,
when the robot is generating a GVG edge, it 1s maintain-
ing equidistance between its two smallest local minima.

3.2 Meet Point Honing

The robot traces an edge until it detects a meet point
or a boundary point. A meet point is, as its name sug-
gests, a point where GVG edges meet. Sometimes meet
points are called generalized Voronoi vertices. At a meet

point, the robot must determine the directions of the
other GVG edges that emanate from it. In the planar
case, a meet point is (at least) triply equidistant to the
nearest obstacles.

While generating the GVG, it is significant that the
robot determine a precise location of the meet point and
thus a meet point honing algorithm was introduced to
trace a path that stably converges onto a meet point
location [8]. The control law for honing on a meet point
is similar to the one for generating new GVG edges,
except the G matrix and its Jacobian are

6e) = [2] ana

dy(x) — ds(x)
Vd1 xr —de z r
VG(z) = [EVchEx; - Vdsgl‘;;T] '

Therefore, G(x) = 0 at a meet point, i.e., di(z) =
dy(x) = dz(x). Therefore, the robot makes the following
correction step to hone in on the meet point

i- g [le(x) - de(x)]T [dl(x) - dz(x)]
le(l‘) - Vd3(l‘) dl(l‘) — dg(l‘)
which can be shown to be stable using the previous anal-
ysis [7]. (Note that Null(VG(z)) =0.)

Geometrically, what is going on is that when the
robot 1s in the vicinity of the meet point, it draws a cir-
cle through the three closest points on the three closest
obstacles. It then determines the center of that circle
and move a differential step towards it. After taking
this small step, 1t repeats this procedure. The stability
of the resulting system allows us to conclude that the
robot will converge to the location of the actual meet
point.

3.3 Exploration

As mentioned above, the robot terminates edge trac-
ing at a meet point or a boundary point. When the
robot encounters a new meet point, it marks off the di-
rection from where it came as explored, and then identi-
fies all new GVG edges that emanate from it. From the
meet point, the robot explores a new GVG edge until 1t
detects either another meet point or a boundary point.
In the case that it detects another new meet point, the
above branching process is recursively repeated.

When there is a cycle in the environment, the robot
will encounter a meet point which it already has discov-
ered. It will have found an old meet point. In this case,
the robot will search for the nearest meet point with un-
explored emanating edges, from which it will continue
the edge tracing process. Making this determination
between old and new meet points in large environments
(non-simulator) is the primary contribution of this pa-
per, to be described in the following sections.

Finally, when a robot reaches a boundary, it simply

turns around and returns to a meet point with unex-
plored GVG edges. Therefore, exploring the GVG in
the workspace i1s akin to exploring a graph, where the
GVG edges are the graph edges, and the GVG vertices

and boundary points are the graph nodes.

4 Dead-reckoning Error Problem

Critical to the above stated exploration procedure is
the robot’s ability to determine if it has encountered a
new meet point or re-visited an old one. When the robot
reaches a meet point, a naive approach would compare
the coordinates of the current meet point with the coor-
dinates of all discovered meet points. If there is a match,
then the robot can locate itself on the partially explored
GVG. Otherwise, the robot can conclude it has reached
a new meet point.

Unfortunately, dead reckoning error interferes with
this decision, as depicted in Figure 1. In this exper-
iment, we deployed a Nomad 200 Mobile base into a
7 x 14 square meter floor space covered with linoleum
tiles. The Nomad 200 can translate and orient in the
plane. The robot also has sixteen radially pointing out-
ward sonar sensors to measure distance to nearby obsta-
cles. Since the GVG is defined in terms of distance, its
incremental construction is well suited to sensor based
navigation.

In this experiment, the robot starts near the hatch
mark which denotes meet point 1. The robot heads
towards meet point 2 tracing a GVG edge, which is de-
noted as a thick solid curve. The thick solid curves are
the (z,y) coordinates of the GVG edge, based on en-
coder readings. The gray squares represent the sensor
reading used to generate the GVG edge. See Figure 1.
Note how they cluster together to form two parallel walls
and the thick solid curve lies in the middle of them.
These sensor readings are not stored by the robot, but
are displayed here for visualization purposes.

The robot then continues from meet point 2, to 3, and
then all the way to meet point 6. Now, the robot must
back-track to a meet point with unexplored directions.
The back-tracked (re-traced) GVG is represented by a
thin gray line and the plus-marks denote the sensor re-
turns from the back-tracking procedure. Again, the thin
gray line represents the coordinates of the GVG, based
on encoder readings.

Note that the thick solid and the thin gray curves do
not line up. This is a result of dead-reckoning error. So,
from the robot’s view of the world, through its encoders,
the environment is starting to rotate clock-wise. When
the robot returns to meet point 1, the robot cannot
conclude from its encoder readings that it is truly at
meet point 1. This is the problem we address in this

paper.

Fig. 1. Dead-reckoning Error.

5 Meet Point Identification

When the robot explores an environment, it can use
meet points as a landmark to reduce dead-reckoning er-
ror. Therefore, the robot must be able to identify at
which meet point it is located or determine it has found
a new one.

Initially, we tried to derive a “sensor signature” for
each meet point based on the robot’s sixteen sonar sen-
sor readings, but this proved to be ineffective. Using
all sixteen sensors was not useful because many of the
readings were in accurate due to specularities and false
echoes. Then, we considered the three smallest local
minima of the circular sonar array. This was not useful
because local minima with “similar” signatures corre-
spond to meet points of significantly different geometry.
See Figure 2.

Instead of using a complicated sensor signature to
identify a meet point, we look for a stable feature, one
which will not change in the presence of sensor noise
and slight changes in robot location. A stable feature
can be viewed as a landmark that the robot determines
on-the-fly. The first distinguishing and stable feature 1s
the distance to the closest obstacle(s) at the meet point;
distance 1s a stable feature because the honing algorithm

Fig. 2. The relative location of the three smallest local minima
(vectors to the closest points on the closest obstacles) are sim-
ilar for strikingly disparate meet points.

I

Fig. 3. Varying neighboring boundary nodes.

described in the previous section has been proven to be
stable. Obviously, this distance measurement will not
distinguish very well meet points among each other, but
it can used to quickly eliminate any candidate matches.

We can also exploit the topology of the GVG to reli-
ably disambiguate meet points by looking at the neigh-
boring nodes of a particular meet point. For example,
a meet point with one neighboring boundary node is
significantly different from one that has two. This crite-
rion readily distinguishes between the two meet points
in Figure 2, where the sensor signature was virtually
useless. For a triply equidistant meet point, the varying
combinations of meet points with neighboring boundary
points is depicted in Figure 3.

Another stable criterion looks at the number of edges
emanating from a meet point. Again, while using the
honing algorithm, sensor noise and position uncertainty
will not affect the number of edges emanating from a
meet point. See Figure 4.

The final criterion matches the relative departure an-
gles of GVG edges emanating from the meet points.
Meet point (A) in Figure 5 has the same ordered set
of departure angles and meet point (B), whereas meet

Fig. 4. Three edges is different from four edges.

A B (rotated) C (reflected)

Fig. 5. Departure angle criterion does not distinguish between (A)
and (B), but does discriminate between (A) and (C).

point (C) may have the same angles as meet point (A),
but the ordering is different. Encoder error cannot af-
fect the ordering of these angles, therefore meet point
(A) is definitely different from meet point (C).

6 Topological Matching: Intensionally

Re-visiting a Meet Point

In this procedure we assume that orientation dead-
reckoning error dominates translational error accumu-
lation. This is a reasonable assumption, at least with
the Nomad 200 from Nomadic Technologies and can be
readily seen in Figure 1 in Section 4. In Figure 1, the
robot started at meet point 1 and worked its way to
meet point 6. Now, the robot must re-traverse the GVG
back to meet point 1 to explore the unvisited edge ema-
nating from meet point 1. The robot first intentionally
returned to meet point 5. Recall, the gray box is the
robot’s perceived location based on encoder coordinates,
but in actuality the robot was located at the solid box.
Since the robot knew it was going to meet point 5 and
we are assuming translational dead-reckoning error is
minimal, the robot re-traversed the edge to meet point
5 using its sensors and then honed onto the meet point.
Since the distance traveled was the same and the robot
identified this meet point as meet point 5, the robot was
able to conclude where it was in the GVG without ever
worrying about its encoder values.

The robot repeated this procedure four more times
until it reached meet point 1. Even though the encoders
indicated that the robot was located at the gray square,
in actuality, it was located at the black square. The
robot knew this because it intentionally sought meet
point 1 and its meet point identifier confirmed that it
had reached meet point 1. Therefore, the robot knew
exactly where it was in the GV G, without ever relying on
global encoder information (just the distance traversed
from the last meet point).

7 Topological Matching: Accidentally
Re-visiting a Meet Point

In the previous section, the robot intentionally di-

rected itself to a meet point it expected to encounter.

However, the robot can unexpectedly find a meet point

when it encounters a new meet point or accidentally
finds an already visited one. The robot must distin-
guish between new and old meet point in order to suc-
cesfully explore an unknown environment. The robot
does this by using the previous meet point indentifica-
tion schemes and by exploiting the adjacency relation-
ships of the meet points.

When the robot encounters a meet point, it enumer-
ates a set of candidate meet points that it could have
reached, based on the criteria of the previous section.
The robot then re-traces an already explored edge ema-
nating from the current meet point to an adjacent meet
point. Again, a set of candidate meet points correspond-
ing to the second meet point is enumerated. If the dis-
tance between a meet point in the second set to any
meet point in the first set is not the same as the dis-
tance the robot traveled from the first meet point to the
second, then the appropriate meet point is eliminated
from the second set. Therefore, the second set of points
only contains meet points which could be adjacent to at
least one meet point in the first set. That is, we have in
essence identified a set of candidate edges that the robot
just traversed. This procedure is repeated once more to
further reduces the set of candidate edges. This is the
next criterion for localizing the robot in the GVG.

It i1s worth noting that the robot does not store the
GVG edges because it retraces them during the back-
tracking operation. Therefore, the robot only stores the
meet points, their adjacency relationships (as edges),
and the distances of each edge. The robot also stores
the departure angle of the GVG edges.

8 Experimental Result

Figure 6 demonstrates an experiment in a real en-
vironment using a Nomad 200 mobile base where lo-
calization was performed using criteria of the previous
sections. Initially the robot starts at meet point 1, then
travels to 2, 3, and 4. From meet point 4, the robot
heads towards meet point 1, but when 1t encounters
meet point 1 it temporarily labels it meet point 5, but
notes that it could be meet point 1. The robot then
moves to meet point 2 and labels 1t meet point 6. Since
meet point 6 “looks like” meet point 2, and the distance
between meet points 5 and 6 is the same as meet points
1 and 2, meet point 2 is a candidate for meet point 6.
Now, the robot moves to meet point 3, temporarily la-
bels it meet point 7 and makes the appropriate matches.
At this point, the robot concludes that 5 1s 1, 6 i1s 2, and
71is 3.

Now, the robot explores meet points 8 and 9. When
the robot re-encounters meet point 2, it is fairly ap-
parent that encoder error has significantly accrued. Al-
though the encoders deceive the robot into thinking it

Fig. 6. Topological Matching. Dark lines correspond to the first
pass and shaded lines delineate re-traces.

is a foot away from its actual location, by matching
GVG edges and nodes, the robot can conclude it is at
meet point 2. From there, the robot explores meet point
10. The final edge is drawn emanating from the shaded
box to emphasize that dead-reckoning error has accu-
mulated, but the robot knows meet point 2 anchors this
the edge. So, the robot has computed the entire TVG
without ever resorting to dead-reckoning, nor having to
update its encoders.

9 Relation to Future Work

The work presented in this paper 1s only the first
The

first immediate problem deals with environments with

step towards the long-term goal of localization.

repeated symmetries. One could increase the number of
edges and nodes to be matched, but there will always be
an environment which will require one more matching.
Furthermore, there are environments that are symmet-
ric and thus this procedure theoretically should not be
able determine the robot’s location in the GVG.
Another problem we have encountered is the emer-
gence of sporadic meet points from “weak” features in
the environment. Sometimes the robot “sees” a third
obstacle and sometimes it does not. Although the GVG
does not change that match, performing topological
matching on a varying GVG is quite difficult. Another
problem deals with meet point that are close to each

other. In one pass, the robot may perceive them as sep-
arate meet points, but in another, it may merge them
into one meet point. Again, the map will have to be
updated to reflect the robot’s perception of the world.
Future work will incorporate the probabilistic method
of Thrun [18] to allow for meet points that appear and
disappear. This will lead to an implementation of this
approach in dynamic environments.

10 Conclusion

Traditional localization procedures require detailed
sensor processing and an a priori detailed map for robot
localization. This paper presents some initial results for
which a robot can explore, map, and localize itself in an
unknown environment. A novel feature of the presented
localization procedure is that it does not rely on encoder
readings, nor other sensors, to explicitly determine its
location. Instead, the robot exploits the topology of
the map it is generating to determine its location, or
conclude that it is visiting unexplored territory.

This work uses a map termed the generalized Voronoi
graph (GVG), which is the locus of points equidistant to
two obstacles in the plane. A robot using sonar sensors
can reliably generate this structure using an incremental
construction procedure which is summarized here, but
detailed in other works. The incremental construction
procedures are robust and have been proven to be sta-
ble, even in the presence of sensor noise. Experimental
results also validate the GVG construction procedures.

Another feature of the GVG incremental construction
routine i1s that it automatically instructs the robot where
to go to explore new regions of the environment. This
is important when exploring unknown environments. In
this paper, the incremental construction routine is up-
dated to direct the robot to reduce its position uncer-
tainty in the GVG graph, whether the robot 1s exploring
an unknown environment or it is re-traversing a known
vicinity.

In this procedure, the robot never determines its
(x,y,0) coordinates. It only needs to know which edges
and nodes correspond to each other. Therefore, the
robot has localized itself, but never needed to explicitly
localize 1tself, hence the title of this paper. Furthermore,
we are not explicitly comparing detailed sensor signa-
tures of the robot’s current state to a previously stored
state. Instead, we are using the topology of the GVG
to localize. (The authors would also like to thank Jon
Canny at Berkeley for his comments which help spark
this research philosophy.)

References
[1] J. Borenstein, B. Everett, and L. Feng. Nawigating Mobile
Robots: Systems and Techniques. A. K. Peters, Ltd., Welles-
ley, MA, 1996.

[2] J. Borenstein and J. Koren. Real-time Onstacle Avoid-

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

ance for Fast Mobile Robots in Cluttered Environments. In
IEEE Conference of Robotics and Automation, pages 572—
577, Cincinnati, Ohio, May 1990.

R.A. Brooks. A Robust Layered Control System for a Mobile
Robot. IEEE Journal on Robotics and Automation, RA-2,
March 1986.

J.F. Canny. The Complezity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

H. Choset and J.W. Burdick. Sensor Based Planning, Part II:
Incremental Construction of the Generalized Voronoi Graph.
In Proc. IEEE Int. Conf. on Robotics and Automation,
Nagoya, Japan, 1995.

H. Choset and J.W. Burdick. Sensor Based Planning: The
Hierarhical Generalized Voronoi Graph. In Proc. Workshop
on Algorithmic Foundations of Robotics, Toulouse, France,
1996.

H Choset, I Konuksven, and A Rizzi.
ning: A Control Law for Generating the Generalized Voronoi
Graph. In Proc. of IEEE Int. Conf. on Autonomous Robots,
Monterey, CA, 1997.

H. Choset, K. Nagatani, and A. Rizzi. Sensor Based Plan-
ning: Using a Honing Strategy and Local Map Method to
Implement the Generalized Voronoi Graph. In SPIE Confer-
ence on Systems and Manufacturing, Pittsburgh, PA, 1997.
G. Dudeck, M. Jenkin, E. Milios, and D. Wilkes. Robotic
exploration as graph construction. IEEE Transactions on
Robotics and Automation, 7:859-865, Dec. 1991.

J.-S. Gutmann. Vergleich von algorithmen zur selbst-
lokalisierung eines mobil en roboters. Master’s thesis, Uni-
versity of Ulm, Ulm, Germany, 1996. (in German).

H.B. Keller. Lectures on Numerical Methods in Bifurcation
Problems. Tata Institute of Fundamental Research, Bombay,
India, 1987.

B. Kuipers and Y.T. Byan. A Robot Exploration and Map-
ping Strategy Based on a Semantic Hierarchy of Spatial Rep-
resentations. Journal of Robotics and Autonomous Systems,
8:47-63, 1991.

F. Lu and E. Milios. Globally consistent range scan alignment
for environment mapp ing. Autonomous Robots, 4:333-349,
1997.

F. Lu and E. Milios. Robot pose estimation in unknown envi-
ronments by matching 2d range scans. Journal of Intelligent
and Robotic Systems, to appear.

C. ()’Dl']nla.ing and C.K. Yap. A “Retraction” Method for
Planning the Motion of a Disc. Algorithmica, 6:104-111,
1985.

N.S.V. Rao, S. Kareti, W. Shi, and S.S. Iyenagar. Robot
Navigation in Unknown Terrains: Introductory Survey of
Non-Heuristic Algorithms. Oak Ridge National Laboratory
Technical Report, ORNL/TM-12410:1-58, July 1993.

H Shatkay and L. Kaelbling. Learning topological maps with
weak local odometric informati on. In Proceedings of IJCAI-
97. TJCAT, Tnc., 1997. 1997.

S. Thrun, D. D. Fox, and W. Burgard. Probabilistic mobile
robot localization and mapping. In submitted to IEEE
ICRA, 1998.

Sensor Based Plan-

