本文へ移動

Hot Topics

[Civil-Eng Robot] Position Estimation of Tethered Micro Unmanned Aerial Vehicle

At disaster sites, the use of Micro Unmanned Aerial Vehicles (MUAVs) is expected for human safety. One application is to support first-phase emergency restoration work conducted by teleoperated construction machines. Recently, to extend the operation time of a MUAV, we proposed a power-feeding tethered MUAV to provide an overhead view of the site to operators. For autonomous flight of the MUAV, we propose a position estimation method by observing the slacked tether instead of using the Global Positioning System (GPS), vision sensors, or a laser rangefinder. The tether shape is assumed to be a catenary curve that can be estimated by measuring the tether's length, tension, and outlet direction. Some indoor experimental results proved the feasibility of the proposed method, as shown in this movie clip.

[Volcano] Development of Multi DOF Tracked Vehicle to Improve weak slope terrainability

In response to active volcano observation, our research group developed a novel multi-D.O.F. tracked vehicle, called ELF. The robot essentially consists of six tracks, and it has eleven actuators for locomotion and change of configuration. These actuators enable the robot to assume various configurations, which increase its ability to traverse weak and rough terrains in volcanic areas. In this movie-clip, the mechanism of Elf and its initial test in a volcanic field are introduced.

[Volcano] Field experiment of robotic technologies to forecast debris flow in Unzen-Fugen-dake

To forecast debris flow in case of a volcanic eruption, our research group made field experiments of robotic technologies in Unzen-Fugen-dake, Nov. 2016. The first experiment was a soil-sampling. The UAV and soil-sampling device returned less than 100g soil. The second experiment was a simple permeability survey with a UAV and a suspended device. It cannot act an actual permeability measurement, but a tendency of permeability can be observed by popping a water balloon. The last experiment was to retracted UGV by UAV’s capturing net. All experiments were conducted in the construction area of Unzen-Fugen-dake, and the sampling device worked in an actual restricted area. (Dec., 2016)

[CLOVER2] Introduction of web browser based robot remote control system

This video introduces our remote control system for the mobile robot that runs ROS. The system can work on a web browser and does not need to install dedicated software to operators PC. Also, the system either work on Android device since browser base.

Autonomous Lake Bed Depth Mapping by a Portable Semi-submersible USV at Mt. Zao Okama Crater Lake

Surveillance of the crater lake is valuable for volcanic disaster prevention. However, this is dangerous work for humans.

We developed an autonomous depth mapping system to reduce the risk of surveillance. A field test was performed at Mt. Zao Okama Crater Lake on June 2, 2016. The path for the autonomous depth mapping was designed to avoid manned surveillance. The navigation through 450 meters of the path was done in 35 minutes. No upset occurs under 5 to 20 m/s of winds and blast. A maximum angle of the body swing was 0.09 rad. Lake bed depth map was successfully generated by the autonomous USV system.

[Civil-Eng Robot] Power feeding helipad for tethered multi-rotor UAV

When sediment disasters occur, unmanned construction machines are useful for emergency rehabilitation from the point of view of worker’s safety. However, in case of initial response, operators feel difficulty because of a lack of visual information caused by no moving camera vehicles. In order to add a third party’s point of view, we developed a power-feeding helipad for tethered multi-rotor UAV mounting on an unmanned construction machine. The helipad controls the tension of the tether for adjustment of its feeding length. In this movie-clip, we introduce our helipad, and show an initial field test.